II Semester M.B.A. Degree Examination, December. 2022 (CBCS 2018-19 Scheme)
 MANAGEMENT

Paper - 2.6 : Quantitative Techniques and Operations Research

Time : 3 Hours
Max. Marks : 70

SECTION - A

Answer any five questions from the following. Each question carries 5 marks.

1. Explain the role and importance of operation research in managerial decisions.
2. What is sequencing problem ? Give its essential characteristics.
3. Solve the following LPP by graphic method.

$$
\begin{array}{ll}
\text { Maximise } Z=375 x+425 y \\
\text { Subject to } & 5 x+4 y \leq 200 \\
& 3 x+5 y \leq 150 \\
& 5 x+4 y \geq 100 \\
& 8 x+4 y \geq 80 \\
& \text { and } x, y \geq 0
\end{array}
$$

4. Solve the problem of assignment for the given table to maximise the sales.

Machines

		A	B	C	D	E
		Jobs	32	38	40	28
40						
	1	40	24	28	21	36
	2	41	27	33	30	37
	3	22	38	41	36	36
	4	29	33	40	35	39

P.T.O.
5. A truck owner estimates that maintenance cost per year of a truck whose purchase price is Rs. 1,50,000 and the resale value of the truck will be

Year	1	2	3	4	5	6
Maintenance cost :	10,000	50,000	20,000	25,000	30,000	40,000
Resale value $:$	$1,30,000$	$1,20,000$	$1,15,000$	$1,05,000$	90,000	75,000

Determine at which time it is profitable to replace the truck.
6. A dealer sells a particular model of washing machine for which the probability distribution of daily demand as given below :

Demand/day :	0	1	2	3	4	5
Probability :	0.05	0.25	0.20	0.25	0.10	0.15

Find the average demand of washing machine per day using the following random numbers
$67,84,02,77,90,14,25,65,45,82$.
7. Determine the optimal sequence of jobs that minimizes total elapsed time. Jobs are processed in the order $M_{1} M_{2} M_{3}$.

Job	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}
$\mathbf{M}_{\mathbf{1}}$	3	8	7	4	9	8	7
$\mathbf{M}_{\mathbf{2}}$	4	3	2	5	1	4	3
$\mathbf{M}_{\mathbf{3}}$	6	7	5	11	5	6	12

SECTION - B

Answer any three questions from the following. Each question carries 10 marks.
$(3 \times 10=30)$
8. Solve the given LPP by Simplex method.

Maximise $\quad Z=3 x_{1}+5 x_{2}+4 x_{3}$
Subject to

$$
\begin{aligned}
& 2 x_{1}+3 x_{2} \leq 8 \\
& 2 x_{2}+5 x_{3} \leq 10 \\
& 3 x_{1}+2 x_{2}+4 x_{3} \leq 15 \\
& \text { and } x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

9. What is a game in game theory? What are the properties of a game ? Explain the 'best strategy' on the basis of minimax criterion of optimality.
||
10. Solve the following transportation problem for maximum profit. inance principle.
Company B
Company A

	$\boldsymbol{B}_{\mathbf{1}}$
\boldsymbol{A}_{1}	35
$\boldsymbol{A}_{\mathbf{2}}$	30
$\boldsymbol{A}_{\mathbf{3}}$	40
$\boldsymbol{A}_{\mathbf{4}}$	55

$\boldsymbol{B}_{\mathbf{2}}$
65
20
50
60

12. Compulsory - Case stuyy.

A Publisher has signed a contract for the publication of a book. What is the earliest time that the book can be ready for distribution? Estimates are given in weeks.

Activity	A	B	C	D	E	F	G	H	I	J
Precedence :	-	-	A, B	A	C, D	E	E	C, D	F, G	I, H
Most likely :	8	2	2	6	4	3	4	6	8	1
Optimistic	4	2	1	4	3	3	3	4	6	1
Pessimistic :	10	2	3	12	5	3	5	9	16	1

1) Draw a network and find the critical path, what is the expected length of the critical path and its variance ?
2) What is the probability that length of the critical path does not exceed
a) 32 weeks
b) 36 weeks
